Combinatorics in Banach space theory
PROBLEMS (Part 3)’

® PROBLEM 3.1. Verify that Phillips’ lemma may be equivalently stated by saying that
the canonical projection m: ¢j*™ — cf is sequentially weak*-to-norm continuous. By the
canonical projection from X*** onto X* we mean the one given by m(z***) = 2™*|;(x),

where j: X — X** is the canonical embedding.

Remark. It is easy to see that m = j*. This is the so-called Dizmier projection which was to be
found in Problem 1.1(a).

® PROBLEM 3.2. We say that a Banach space X has the [weak| Phillips property whene-
ver the Dixmier projection from X** onto X* is sequentially weak*-to-norm [weak*-to-
weak| continuous. Show that for every Banach space X with the weak Phillips property
the dual X* is weakly sequentially complete (that is, every weakly Cauchy sequence is
weakly convergent).

Remark. In view of this assertion, we may say that Phillips’ lemma implies that ¢; is weakly
sequentially complete.

® PROBLEM 3.3. Let (e,)22, be the sequence of canonical unit vectors in ¢q. Define
a vector measure fi: PN — ¢y by the formula p(A) = > ,.ca %en for A C N. Determine
the semivariation ||p/|.

® PROBLEM 3.4. Let u be a real-valued, o-additive measure defined on a o-algebra 3.
Let also P € ¥ be a positive set from the Hahn decomposition theorem, that is, a set
satisfying (AN P) > 0 and pu(A\ P) < 0 for every A € ¥, and let pu*(A) = (AN P)
and p~(A) = —pu(A\ P) (A € X). Show that |u| = put + .

® PROBLEM 35. Let A\ and p be two o-additive measures defined on a o-algebra 3,
where ) is complex-valued and p is non-negative and o-finite. Suppose A < p, i.e.
pu(E) = 0 implies A(E) = 0, for every E € 3. Show that [\ < p.

® PROBLEM 3.6. Let i be a finite, o-additive, non-negative measure defined on a o-
algebra 3, and let .# C ¥ be a set algebra. Assume that (f,)%°, is a bounded and
equi-integrable sequence of functions from L;(u) (see Definition 3.4) such that the limit
F(E) = lim, . [p fndp exists for each £ € .#. Prove that this limit exists also for every
E belonging to ¥/, the o-algebra generated by .%#, and it defines a o-additive measure
F: ¥ —R.

® PROBLEM 3.7. Let K be a compact, Hausdorff space and (1), C M(K) be a se-
quence of regular, scalar-valued, o-additive Borel measures on K such that for every
sequence (U,), of pairwise disjoint open subsets of K we have lim,_, 1, (U,) = 0.
Show that for every such sequence (U,)32; we have also lim,,_,« |in|(Un) = 0.

©® PROBLEM 3.8. Let K and M(K) be like in the previous problem. For any non-negative
measure 1 € M(K) let AC(u) be the set of all measures from M(K) that are absolutely
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continuous with respect to u. Prove that AC(u) is a closed subspace of M(K) (recall
that the norm considered here is the total variation norm).

® PROBLEM 3.9. Several equivalent clauses may be accepted as a definition of Grothen-
dieck space, but the most common is the following one: A Banach space X is called
a Grothendieck space whenever every w*-null sequence in X* is weakly null.

Suppose X is a Grothendieck space and Y is a Banach space such that there is
a surjective bounded linear operator 7: X — Y. Directly from the above definition show
that Y is also a Grothendieck space. In other words, the property of being a Grothendieck
spaces is inherited by quotients.

Hint. Use the fact that T™ is weak®-to-weak™ continuous and that 7™ maps X** onto Y **.

® PROBLEM 3.10. Show that every separable quotient of /., is reflexive.

Hint. Use Problem 3.9.

Remark. By H.P. Rosenthal’s result from 1968 (see Theorem ___ from the lecture notes), we know
that the most fundamental infinite-dimensional reflexive space, that is £, actually is a quotient
of {, and, even more, {5(¢) is also a quotient of {,. This is a great application of big independent
families!

PROBLEM 3.11. Show that, unlike ¢y, the space L;(0, 1) does not have Schur’s property.

Hint. Try some orthonormal sequence from Lo (0, 1).

PROBLEM 3.12. Disprove that ¢; is a Grothendieck space by pointing to a concrete
example of a w*-null sequence in {, (~ ¢}) that is not weakly null.
Hint. You will need some special functional from /., to show that your sequence is not weakly

null, namely, the Banach limit (in fact, there are many of them). See, e.g., Exercise II1.4 in
[Rud91].

PROBLEM 3.13. Let K be a compact, Hausdorff space and ¥ be the o-algebra of
all Borel subsets of K. Let also A C M(K) be a family of scalar-valued, o-additive
measures defined on . Show that the following three statements are equivalent:

(i) A is uniformly regular (see Definition 3.3);
(ii) A is uniformly o-additive, that is, for every decreasing sequence (E,)5, C 3 we
have lim,, oo SUp,,c 4 |1 (Ern) = 0;
(iii) A is both outer and inner uniformly regular, that is, for every F € ¥ and every
€ > 0 there exists an open set V O E and a compact set H C E such that

supea |pl(V\ H) <e.

PROBLEM 3.14. Let F be a bounded subset of Li(u), where p is a o-finite, o-additive,
non-negative measure defined on some o-algebra. Show that the following two conditions
are equivalent:

(i) F is equi-integrable (see Definition 3.4);

Hint. For the implication (i) = (ii) use the Chebyshev inequality: u({|f| > M}) < || fll1/M,
for any f € Li(p) and any M > 0.



PROBLEM 3.15. Show that there exists a functional ¢ € ¢;_ such that for each z € {
the value ¢(x) is equal to one of the partial limits of the sequence .

Hint. Incorporate the Banach—Alaoglu theorem.

® PROBLEM 3.16. Let K and M(K) be like in Problem 3.7 and let A\, u € M(K), u > 0,
satisfy A < p. Let also f € Li(u) be the Radon—Nikodym derivative of A with respect
to pu (f = dA\/du). Prove that

IA(E) = / |f|dp for every Borel set E C K.
E

® PROBLEM 3.17. For each n € N let e} be the nth coordinate functional defined on
¢o- Do there exist any Hahn-Banach extensions f;; of e, defined on the space ¢, with
the property that for every x € (., the series >°°, f*(x)e, converges in norm (not
necessarily to z)?



