Combinatorics in Banach space theory

PROBLEMS (Part 3)*

• **PROBLEM 3.1.** Verify that Phillips' lemma may be equivalently stated by saying that the canonical projection $\pi: c_0^{***} \to c_0^*$ is sequentially weak*-to-norm continuous. By the canonical projection from X^{***} onto X^* we mean the one given by $\pi(x^{***}) = x^{***}|_{j(X)}$, where $j: X \to X^{**}$ is the canonical embedding.

Remark. It is easy to see that $\pi = j^*$. This is the so-called *Dixmier projection* which was to be found in Problem 1.1(a).

• **PROBLEM 3.2.** We say that a Banach space X has the [weak] Phillips property whenever the Dixmier projection from X^{***} onto X^* is sequentially weak*-to-norm [weak*-toweak] continuous. Show that for every Banach space X with the weak Phillips property the dual X^* is weakly sequentially complete (that is, every weakly Cauchy sequence is weakly convergent).

Remark. In view of this assertion, we may say that Phillips' lemma implies that ℓ_1 is weakly sequentially complete.

• **PROBLEM 3.3.** Let $(e_n)_{n=1}^{\infty}$ be the sequence of canonical unit vectors in c_0 . Define a vector measure $\mu: \mathcal{PN} \to c_0$ by the formula $\mu(A) = \sum_{n \in A} \frac{1}{n} e_n$ for $A \subset \mathbb{N}$. Determine the semivariation $\|\mu\|$.

• **PROBLEM 3.4.** Let μ be a real-valued, σ -additive measure defined on a σ -algebra Σ . Let also $P \in \Sigma$ be a positive set from the Hahn decomposition theorem, that is, a set satisfying $\mu(A \cap P) \ge 0$ and $\mu(A \setminus P) \le 0$ for every $A \in \Sigma$, and let $\mu^+(A) = \mu(A \cap P)$ and $\mu^-(A) = -\mu(A \setminus P)$ ($A \in \Sigma$). Show that $|\mu| = \mu^+ + \mu^-$.

• **PROBLEM 3.5.** Let λ and μ be two σ -additive measures defined on a σ -algebra Σ , where λ is complex-valued and μ is non-negative and σ -finite. Suppose $\lambda \ll \mu$, i.e. $\mu(E) = 0$ implies $\lambda(E) = 0$, for every $E \in \Sigma$. Show that $|\lambda| \ll \mu$.

• **PROBLEM 3.6.** Let μ be a finite, σ -additive, non-negative measure defined on a σ algebra Σ , and let $\mathscr{F} \subset \Sigma$ be a set algebra. Assume that $(f_n)_{n=1}^{\infty}$ is a bounded and equi-integrable sequence of functions from $L_1(\mu)$ (see Definition 3.4) such that the limit $F(E) = \lim_{n\to\infty} \int_E f_n d\mu$ exists for each $E \in \mathscr{F}$. Prove that this limit exists also for every E belonging to Σ' , the σ -algebra generated by \mathscr{F} , and it defines a σ -additive measure $F: \Sigma' \to \mathbb{R}$.

• **PROBLEM 3.7.** Let K be a compact, Hausdorff space and $(\mu_n)_{n=1}^{\infty} \subset \mathcal{M}(K)$ be a sequence of regular, scalar-valued, σ -additive Borel measures on K such that for every sequence $(U_n)_{n=1}^{\infty}$ of pairwise disjoint open subsets of K we have $\lim_{n\to\infty} \mu_n(U_n) = 0$. Show that for every such sequence $(U_n)_{n=1}^{\infty}$ we have also $\lim_{n\to\infty} |\mu_n|(U_n) = 0$.

• **PROBLEM 3.8.** Let K and $\mathcal{M}(K)$ be like in the previous problem. For any non-negative measure $\mu \in \mathcal{M}(K)$ let $\mathcal{AC}(\mu)$ be the set of all measures from $\mathcal{M}(K)$ that are absolutely

^{*}Evaluation: $\blacksquare=2pt$, $\blacksquare=3pt$, $\blacksquare=4pt$

continuous with respect to μ . Prove that $\mathcal{AC}(\mu)$ is a closed subspace of $\mathcal{M}(K)$ (recall that the norm considered here is the total variation norm).

• **PROBLEM 3.9.** Several equivalent clauses may be accepted as a definition of Grothendieck space, but the most common is the following one: A Banach space X is called a *Grothendieck space* whenever every w^* -null sequence in X^* is weakly null.

Suppose X is a Grothendieck space and Y is a Banach space such that there is a surjective bounded linear operator $T: X \to Y$. Directly from the above definition show that Y is also a Grothendieck space. In other words, the property of being a Grothendieck spaces is inherited by quotients.

Hint. Use the fact that T^* is weak*-to-weak* continuous and that T^{**} maps X^{**} onto Y^{**} .

• **PROBLEM 3.10.** Show that every separable quotient of ℓ_{∞} is reflexive.

Hint. Use Problem 3.9.

Remark. By H.P. Rosenthal's result from 1968 (see Theorem ____ from the lecture notes), we know that the most fundamental infinite-dimensional reflexive space, that is ℓ_2 , actually is a quotient of ℓ_{∞} and, even more, $\ell_2(\mathfrak{c})$ is also a quotient of ℓ_{∞} . This is a great application of big independent families!

• **PROBLEM 3.11.** Show that, unlike ℓ_1 , the space $L_1(0, 1)$ does not have Schur's property. **Hint.** Try some orthonormal sequence from $L_2(0, 1)$.

• **PROBLEM 3.12.** Disprove that ℓ_1 is a Grothendieck space by pointing to a concrete example of a w^* -null sequence in ℓ_{∞} ($\simeq \ell_1^*$) that is not weakly null.

Hint. You will need some special functional from ℓ_{∞} to show that your sequence is not weakly null, namely, the *Banach limit* (in fact, there are many of them). See, e.g., Exercise III.4 in [Rud91].

• **PROBLEM 3.13.** Let K be a compact, Hausdorff space and Σ be the σ -algebra of all Borel subsets of K. Let also $\mathcal{A} \subset \mathcal{M}(K)$ be a family of scalar-valued, σ -additive measures defined on Σ . Show that the following three statements are equivalent:

- (i) \mathcal{A} is uniformly regular (see Definition 3.3);
- (ii) \mathcal{A} is uniformly σ -additive, that is, for every decreasing sequence $(E_n)_{n=1}^{\infty} \subset \Sigma$ we have $\lim_{n\to\infty} \sup_{\mu\in\mathcal{A}} |\mu|(E_n) = 0$;
- (iii) \mathcal{A} is both *outer* and *inner* uniformly regular, that is, for every $E \in \Sigma$ and every $\varepsilon > 0$ there exists an open set $V \supset E$ and a compact set $H \subset E$ such that $\sup_{\mu \in \mathcal{A}} |\mu|(V \setminus H) < \varepsilon$.

• **PROBLEM 3.14.** Let \mathcal{F} be a bounded subset of $L_1(\mu)$, where μ is a σ -finite, σ -additive, non-negative measure defined on some σ -algebra. Show that the following two conditions are equivalent:

- (i) \mathcal{F} is equi-integrable (see Definition 3.4);
- (ii) $\lim_{M\to\infty} \sup_{f\in\mathcal{F}} \int_{\{|f|>M\}} |f| d\mu = 0.$

Hint. For the implication (i) \Rightarrow (ii) use the Chebyshev inequality: $\mu(\{|f| > M\}) \leq ||f||_1/M$, for any $f \in L_1(\mu)$ and any M > 0.

• **PROBLEM 3.15.** Show that there exists a functional $\varphi \in \ell_{\infty}^*$ such that for each $x \in \ell_{\infty}$ the value $\varphi(x)$ is equal to one of the partial limits of the sequence x. **Hint.** Incorporate the Banach–Alaoglu theorem.

• **PROBLEM 3.16.** Let K and $\mathcal{M}(K)$ be like in Problem 3.7 and let $\lambda, \mu \in \mathcal{M}(K), \mu \ge 0$, satisfy $\lambda \ll \mu$. Let also $f \in L_1(\mu)$ be the Radon–Nikodým derivative of λ with respect to μ ($f = d\lambda/d\mu$). Prove that

$$|\lambda|(E) = \int_E |f| d\mu$$
 for every Borel set $E \subset K$.

• **PROBLEM 3.17.** For each $n \in \mathbb{N}$ let e_n^* be the *n*th coordinate functional defined on c_0 . Do there exist any Hahn-Banach extensions f_n^* of e_n^* , defined on the space ℓ_{∞} , with the property that for every $x \in \ell_{\infty}$ the series $\sum_{n=1}^{\infty} f_n^*(x)e_n$ converges in norm (not necessarily to x)?