
Combinatorics in Banach space theory
PROBLEMS (Part 3)∗

PROBLEM 3.1. Verify that Phillips’ lemma may be equivalently stated by saying that
the canonical projection π : c∗∗∗0 → c∗0 is sequentially weak∗-to-norm continuous. By the
canonical projection from X∗∗∗ onto X∗ we mean the one given by π(x∗∗∗) = x∗∗∗|j(X),
where j : X → X∗∗ is the canonical embedding.
Remark. It is easy to see that π = j∗. This is the so-called Dixmier projection which was to be
found in Problem 1.1(a).

PROBLEM 3.2. We say that a Banach space X has the [weak] Phillips property whene-
ver the Dixmier projection from X∗∗∗ onto X∗ is sequentially weak∗-to-norm [weak∗-to-
weak] continuous. Show that for every Banach space X with the weak Phillips property
the dual X∗ is weakly sequentially complete (that is, every weakly Cauchy sequence is
weakly convergent).
Remark. In view of this assertion, we may say that Phillips’ lemma implies that `1 is weakly
sequentially complete.

PROBLEM 3.3. Let (en)∞n=1 be the sequence of canonical unit vectors in c0. Define
a vector measure µ : PN → c0 by the formula µ(A) =

∑
n∈A

1
n
en for A ⊂ N. Determine

the semivariation ‖µ‖.

PROBLEM 3.4. Let µ be a real-valued, σ-additive measure defined on a σ-algebra Σ.
Let also P ∈ Σ be a positive set from the Hahn decomposition theorem, that is, a set
satisfying µ(A ∩ P ) > 0 and µ(A \ P ) 6 0 for every A ∈ Σ, and let µ+(A) = µ(A ∩ P )
and µ−(A) = −µ(A \ P ) (A ∈ Σ). Show that |µ| = µ+ + µ−.

PROBLEM 3.5. Let λ and µ be two σ-additive measures defined on a σ-algebra Σ,
where λ is complex-valued and µ is non-negative and σ-finite. Suppose λ � µ, i.e.
µ(E) = 0 implies λ(E) = 0, for every E ∈ Σ. Show that |λ| � µ.

PROBLEM 3.6. Let µ be a finite, σ-additive, non-negative measure defined on a σ-
algebra Σ, and let F ⊂ Σ be a set algebra. Assume that (fn)∞n=1 is a bounded and
equi-integrable sequence of functions from L1(µ) (see Definition 3.4) such that the limit
F (E) = limn→∞

∫
E fn dµ exists for each E ∈ F . Prove that this limit exists also for every

E belonging to Σ′, the σ-algebra generated by F , and it defines a σ-additive measure
F : Σ′ → R.

PROBLEM 3.7. Let K be a compact, Hausdorff space and (µn)∞n=1 ⊂ M(K) be a se-
quence of regular, scalar-valued, σ-additive Borel measures on K such that for every
sequence (Un)∞n=1 of pairwise disjoint open subsets of K we have limn→∞ µn(Un) = 0.
Show that for every such sequence (Un)∞n=1 we have also limn→∞ |µn|(Un) = 0.

PROBLEM 3.8. Let K andM(K) be like in the previous problem. For any non-negative
measure µ ∈M(K) let AC(µ) be the set of all measures fromM(K) that are absolutely
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continuous with respect to µ. Prove that AC(µ) is a closed subspace of M(K) (recall
that the norm considered here is the total variation norm).

PROBLEM 3.9. Several equivalent clauses may be accepted as a definition of Grothen-
dieck space, but the most common is the following one: A Banach space X is called
a Grothendieck space whenever every w∗-null sequence in X∗ is weakly null.

Suppose X is a Grothendieck space and Y is a Banach space such that there is
a surjective bounded linear operator T : X → Y . Directly from the above definition show
that Y is also a Grothendieck space. In other words, the property of being a Grothendieck
spaces is inherited by quotients.
Hint. Use the fact that T ∗ is weak∗-to-weak∗ continuous and that T ∗∗ maps X∗∗ onto Y ∗∗.

PROBLEM 3.10. Show that every separable quotient of `∞ is reflexive.
Hint. Use Problem 3.9.
Remark. By H.P. Rosenthal’s result from 1968 (see Theorem from the lecture notes), we know
that the most fundamental infinite-dimensional reflexive space, that is `2, actually is a quotient
of `∞ and, even more, `2(c) is also a quotient of `∞. This is a great application of big independent
families!

PROBLEM 3.11. Show that, unlike `1, the space L1(0, 1) does not have Schur’s property.
Hint. Try some orthonormal sequence from L2(0, 1).

PROBLEM 3.12. Disprove that `1 is a Grothendieck space by pointing to a concrete
example of a w∗-null sequence in `∞ (' `∗1) that is not weakly null.
Hint. You will need some special functional from `∞ to show that your sequence is not weakly
null, namely, the Banach limit (in fact, there are many of them). See, e.g., Exercise III.4 in
[Rud91].

PROBLEM 3.13. Let K be a compact, Hausdorff space and Σ be the σ-algebra of
all Borel subsets of K. Let also A ⊂ M(K) be a family of scalar-valued, σ-additive
measures defined on Σ. Show that the following three statements are equivalent:

(i) A is uniformly regular (see Definition 3.3);
(ii) A is uniformly σ-additive, that is, for every decreasing sequence (En)∞n=1 ⊂ Σ we

have limn→∞ supµ∈A |µ|(En) = 0;
(iii) A is both outer and inner uniformly regular, that is, for every E ∈ Σ and every

ε > 0 there exists an open set V ⊃ E and a compact set H ⊂ E such that
supµ∈A |µ|(V \H) < ε.

PROBLEM 3.14. Let F be a bounded subset of L1(µ), where µ is a σ-finite, σ-additive,
non-negative measure defined on some σ-algebra. Show that the following two conditions
are equivalent:

(i) F is equi-integrable (see Definition 3.4);
(ii) limM→∞ supf∈F

∫
{|f |>M} |f | dµ = 0.

Hint. For the implication (i) ⇒ (ii) use the Chebyshev inequality: µ({|f | > M}) 6 ‖f‖1/M ,
for any f ∈ L1(µ) and any M > 0.
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PROBLEM 3.15. Show that there exists a functional ϕ ∈ `∗∞ such that for each x ∈ `∞
the value ϕ(x) is equal to one of the partial limits of the sequence x.
Hint. Incorporate the Banach–Alaoglu theorem.

PROBLEM 3.16. Let K andM(K) be like in Problem 3.7 and let λ, µ ∈M(K), µ > 0,
satisfy λ � µ. Let also f ∈ L1(µ) be the Radon–Nikodým derivative of λ with respect
to µ (f = dλ/dµ). Prove that

|λ|(E) =
∫
E
|f | dµ for every Borel set E ⊂ K.

PROBLEM 3.17. For each n ∈ N let e∗n be the nth coordinate functional defined on
c0. Do there exist any Hahn–Banach extensions f ∗n of e∗n, defined on the space `∞, with
the property that for every x ∈ `∞ the series

∑∞
n=1 f

∗
n(x)en converges in norm (not

necessarily to x)?
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